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Abstract 
Software agents are currently the subject of much research in many interrelated fields.  While much 

of the agent community has concentrated on building exemplar agent systems, defining theories of agent 

behavior and inter-agent communications, there has been less emphasis on defining the techniques 

required to build practical agent systems.  While many agent researchers refer to tasks performed by roles 

within a multiagent system, few really define the what they mean by tasks.  We believe that the definition 

of tasks is critical in order to completely define what an agent within a multiagent system.  Tasks not only 

define the types of internal processing an agent must do, but also how interactions with other agents relate 

to those internal processes.   

In this report, we define concurrent tasks, which specify a single thread of control that defines a task 

that the agent can perform and integrates inter-agent as well as intra-agent interactions.  We typically 

think of concurrent tasks as defining how a role decides what actions to take, not necessarily what the 

agent does.  This is an important distinction when talking about agents since hard-coding specific 

behavior may not be the ideal case.  Often agents incorporate the concept of plans and planning to 

determine what to do.  In these cases, we would develop a concurrent task for determining how the 

planning and plan implementation occurs, but not to describe the individual plans themselves.   
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1. Introduction 

Software agents are currently the subject of much research in many interrelated fields.  While much 

of the agent community has concentrated on building exemplar agent systems, defining theories of agent 

behavior and inter-agent communications, there has been less emphasis on defining the techniques 

required to build practical agent systems.   

Many agent researchers refer to tasks performed by roles within a multiagent system (Kendall 1998, 

Wooldridge, Jennings & Kinny 1999).  However, few really define the essence of what they mean by 

tasks.  We believe that the definition of tasks is critical in order to completely define what an agent within 

a multiagent system.  Tasks not only define the types of internal processing an agent must do, but also 

how interactions with other agents relate to those internal processes.  Some researchers have focused on 

coordination (Barber 1999, Wooldridge, Jennings & Kinny 1999) and some on internal agent reasoning 

(Kinny, Georgeff, & Rao 1996), few have combined the two.   

2. Background 

In general, our research has focused on developing the methodology, techniques, and tools for 

building practical agent systems (DeLoach & Wood 2000).  To this end, we have developed the 

Multiagent Systems Engineering methodology (Wood & DeLoach 2000) that defines multiagent systems 

in terms of agent classes and their organization.  We define their organization in terms of which agents 

can communicate using conversations.  There are two basic phases in MaSE: analysis and design.  The 

first phase, Analysis, includes three steps: capturing goals, applying use cases, and  

The first step capturing goals takes user requirements and turns them and top-level system goals.  

After defining system level goals, we extract system-level use cases and define Sequence Charts for each 

in the applying use cases step.  This step defines an initial set of system roles and communications paths.  

Using the system goals and roles identified in the use cases, we refine and extend the initial set of roles 

and define tasks to accomplish each goal in the refining roles step. 
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In the next phase, Design, we transform the analysis models into specific constructs that can be used 

to build a multiagent system.  The Design phase has four steps:  creating agent classes, constructing 

conversations, assembling agent classes, and system design.  In the first step, creating agent classes, we 

define specific agent classes to fill the roles defined in the Analysis phase.  Then, after determining the 

number and types of agent classes in the system, we can either construct conversations between those 

agent classes or define the internal components that comprise the agent classes.  These two steps may be 

carried out in parallel in the constructing conversations and assembling agent classes steps.  Once we 

have completely defined the system structure, we define how the system is to be deployed.  During this 

step the number of individual agents, their locations are defined, and other system specific items are 

defined. 

The most interesting, and most difficult, part of using the MaSE methodology is transforming the 

roles into agent classes and defining the conversations and internal agent behaviors.  To help us 

accomplish this task, we need to be able to define high-level role tasks that can be transformed into 

specific agent functionality.  This functionality helps us define the internal components of agents as well 

as the details of the conversations in which the agents participate.  In this paper, we proposed use a 

Concurrent Task model to help define these high-level role and agent class behaviors.  We define these 

concurrent tasks as a finite state automaton that specifies messages between agent classes and internal 

agent components as well is the activities or functions of the agent.  Using concurrent tasks, higher level, 

complex interaction protocols that require the coordination with multiple agents can be defined.  We have 

also shown that we can actually verify correct operation of such interaction protocols based on 

Concurrent Tasks (Lacey & DeLoach 2000). 

In this paper, we cover the syntax and semantics of concurrent task models and describe different 

types of tasks that may be developed.  We also present a few examples.  Although goal of using 

Concurrent Task models is to help define the internal agent behavior and conversations, we do not define 

a methodology to help us do that at this time. 
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3. Concurrent Tasks 

We define agent behavior to be defined by a number of concurrent tasks.  These tasks specify a single 

thread of control that defines a task that the agent can perform and integrates inter-agent as well as intra-

agent interactions.  We typically think of concurrent tasks as defining how a role decides what actions to 

take, not necessarily what the agent does.  This is an important distinction when talking about agents 

since hard-coding specific behavior may not be the ideal case.  Often agents incorporate the concept of 

plans and planning to determine what to do.  In these cases, we would develop a concurrent task for 

determining how the planning and plan implementation occurs, but not to describe the individual plans 

themselves.  Concurrent tasks are specified graphically using a finite state automaton as shown in Figure 

1.  All tasks are assumed to start execution upon startup of the agent and continue until the agent 

terminates or an end state is reached. 

idle
state1

known = check(y)
x = action(y)

state2

terminate

receive(try(y), agent)

[known] / send(do(x), agent)receive(ack, agent)

[NOT known]

Invariants:
known : Boolean

 

Figure 1.  Concurrent Task 

We model agent behavior as consisting of n concurrent tasks.  Each of these tasks executes in parallel 

to define the behavior of the agent.  Activities are used to specify actual functions carried out by the agent 

and are performed inside the task states.  While these tasks execute concurrently and carry out high-level 

behavior, they can be coordinated using internal events.  Internal events are passed from one task to 

another and are specified on the transitions between states.  To communicate with other agents, external 
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messages can be sent and received.  These are specified as internal send and receive events.  These events 

send and retrieve messages from the message-handling component of the agent, which is assumed to 

exist.  Besides communication with other agents, tasks can interact with the environment via reading 

percepts or performing operations that affect the environment.  This interaction is typically captured in 

functions defined in the states.  By including reasoning within tasks, agents are not “hardwired” or purely 

reflexive.  They can plan, search, or use knowledge-based reasoning to decide on appropriate actions 

3.1 Syntax 
The syntax of a concurrent task has two components: states and transitions.  As defined above, the 

states and transitions are similar to the states and transitions of most other finite automata models.  States 

encompass the processing that goes on internal to the agent.  This processing is denoted by a sequence of 

activities specified in a functional form.  Transitions denote communication between agents or between 

tasks.  Of each of these components are specified completely below. 

3.1.1 Transitions 
A transition consists of five items.  First, each transition has a single source state and a single 

destination state.  A transition also has a trigger, which is either a message from an external agent (a 

receive event) or an internal event from another task.  For example, in Figure 1, the transition between the 

idle state and state1 consists of a trigger, receive(try(y), agent).  In this case, an event receive is 

transmitted to the task.  The parameters of the trigger event are the message and the agent from which the 

message was sent. 

Each transition may also have a guard, which is a Boolean condition that must be true before the 

transition may occur.  In Figure 1 we can see that the transition from state1 to the idle state is simply [NOT 

known], which has only a single guard condition.  The variable known is Boolean condition computed in 

state1 based on the value of y.  The other transition leaving state1, [known]/send(do(x),agent), also 

uses known for a guard condition. 

A transition may also have transmissions, which are either a message to an external agent (a send 

event) or an event sent to another task.  The send event in the transition from state1 to state2, 
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[known]/send(do(x),agent), denotes a transmission.  In this case, this is a message to agent to do(x).  

Multiple transmissions may be separated with a semicolon (;).  The semicolon not only separates 

transmissions, but also imparts a sequential ordering to their actual transmission.  While null transitions 

are not allowed (with the exception of the transition from the start state), transitions may be made with 

just a guard condition and no triggers or transmissions.  Transitions that occur with no communications or 

guard conditions separating two states should be combined into a single state or the state being 

transitioned to must be the idle state.  The syntax for a transition is shown below. 

Trigger [guard] / transmission(s) 

Generally, events specified in a trigger or transmissions are assumed to come from another task 

within the same agent.  This allows an agent to coordinate its tasks.  For instance the terminate event in 

Figure 1 must come from another task being executed within the same agent.  However, two special 

events are used to indicate that a message is actually sent from the current agent to another agent: send 

and receive.  The send event is used to send a message to an external agent and has the following syntax. 

send(message, agent) 

The message is defined as a performative, which describes the intent of the message, along with a set 

of parameters that are the content of the message.  Again, the transition 

[known]/send(do(x),agent) 

in Figure 1 involves sending a do message to a particular agent.  In this case, do is the performative while 

y is the content of the message.  The format of a message is shown below where p1 … pn denotes n 

possible parameters. 

performative(p1 … pn) 

It is possible for a message to contain only a performative with no contents.  In this case, only the 

performative and agent identifier is required.  For example, to send a simple acknowledgement message, 

the message would have the syntax send(acknowledge, agent), where acknowledge is the performative 

and the second parameter is interpreted as the agent to whom the message is sent.  
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It is also possible to send a message to a group of agents via multicasting.  This is a common 

capability supported by many inter-agent communication frameworks and can be simulated by sending 

multiple messages, if not supported directly by the communication framework.  Instead of specifying a 

single agent to send a message to, a group name is specified by enclosing the group name with braces 

(e.g., <group-name>) .  The syntax for a multicast message is shown below. 

send(message, <group-name>) 

The receive event has a similar syntax to a send event as shown below. 

receive(message, agent) 

In this case, a receive event is only valid as a trigger and follows the same syntax rules as the send 

event.  In the case of send and receive events, there must always be at least one parameter denoting the 

agent to or from whom the message was sent or received.  An example of a receive event that gets a 

message ack from another agent is shown in Figure 1.  In this case, the transition is from state2 back to 

the idle state.  The message ack is received with no parameters (i.e., no message contents).  Obviously, 

the ack is simply an acknowledgement that the previous do(x) message was received by the other agent. 

3.1.2 States 
States may contain activities, which can be used to represent internal reasoning, reading a percept 

from sensors, or performing actions via effectors.  Multiple activities may be included in a single state 

and are performed in sequence.  Once in a state, the task remains in that state until activity processing is 

complete and a transition out of the state becomes enabled.  Activities are defined in the form of 

functions.  Each function may return up to one result and may have a number of input parameters.  For 

example, in state1 in Figure 1, there are two activities performed in sequence: check(y) and action(y).  

The check(y) activity returns a value, which is stored in the variable known, while the action(y) activity 

returns a value stored in variable x.  Once processing starts in state1, both activities must complete before 

either of the transitions out of state1 are enable.  The syntax of an activity statement is shown below. 

result = activity-name(parameter1, parameter2, … parametern) 

Multiple results may be returned from activity using tuple notation such as  
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<x, y> = divide(a, b) 

Once a multiple value has been returned in a tuple, the individual variables that make up the tuple can 

be referred to as independent variables. 

States with an asterisk (*) following their name denote optional states.  Optional states are states that 

do not have to be entered into for the task to be performed in a valid manner.  Specification of optional 

states allow for automated verification of task protocols.  They do not affect the semantics of the task. 

3.1.3 Task Invariants 
Each task may have a set of invariants that must hold during then entire life of the task.  These 

invariants may either specify variable datatypes in the form of  

variable : datatype 

or specify a general condition using traditional axiomatic expressions.   Invariants are annotated in a box 

in the lower left of the task model as shown in Figure 1.  We do not restrict the actual syntax of the 

invariant axioms. 

3.2 Semantics 
Semantics of concurrent tasks are based on standard finite state automata such as Statecharts.  

However, because a single agent is defined by a number of concurrent task models, the state of an agent is 

actually defined by the set of current states in each of the agent’s active concurrent tasks.    Because 

activities occur in states, agents are typically in a state for a finite amount of time.  On the other hand, we 

assume that transitions between states occur instantaneously.  This allows the state of the agent to be 

precisely determined at any point in time.  

The variables used in activity definitions in states and in message and event definitions on transitions 

are assumed to be globally visible within the task, but not outside of the task.  This does not mean that the 

variables used in a task definition are visible inside the activities defined in the task.  The only way to 

transfer information from a task to an activity is by parameters passed to the activity or the result returned 

from the activity.  The only way to pass information between task models is to explicitly pass information 

as parameters in an event call.  In Figure 1, the variable y is set when the task receives the try message 
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from another agent.  This value of y is now globally available within the task definition.  For instance, 

when the check(y) and action(y) activities are performed in state1, the value of y received from the try 

message is passed as a parameter.  Since activities are defined as functions, the parameter y cannot be 

changed inside the check activity and thus has the same value when passed to check and action.  

Likewise the result of action gets stored in the variable x which is sent out in the do(x) message on the 

transition from state1 to state2.   

We also assume that all messages sent between agents and events sent between tasks are queued.  

This allows us to ensure that all messages are received even if the agent or task is not in the appropriate 

state to handle the message or event immediately.  We also allow the task to search the queue for 

messages that can be handled in the current state, although messages and events of the same type are 

handled in the order they are received.   

3.2.1 States 
Each task is in exactly one state at any point in time.  That means that transitions between states are 

instantaneous while states take time.  Generally, states are used for two purposes: waiting for an event or 

performing internal processing.  If there are no activities in a particular state or all activities have been 

completed and no transitions have been enabled, then the task is idle waiting on a transition to be enabled.   

All activities occur in a state and are executed sequentially.  When a task enters a state, the first 

activity is automatically executed.  Upon completion of the first activity, subsequent activities are 

executed one by one.  No transitions out of the state are enabled until all activities have been completed.  

For example, the execution of state1 in Figure 1 is equivalent to the following code fragment from a 

traditional imperative programming language such as C or Java (assuming the send and change of state 

happens instantaneously): 

   known = check(y); 
   x = action(y); 
   if (known) 
    nextState = idle; 
   if (!known) 
    send(do(x), agent) and nextState = state2; 
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Concurrent tasks have a number of predefined activities that deal with mobility, time, and the sending 

and receiving of messages.  The first predefined activity is the move activity.  The move activity specifies 

that the agent is to move to a new address.  The result of the move activity is a Boolean value that states 

whether the move actually occurred.  It is possible that an agent may want to move to a new location but 

is unable to for some reason.  The agent should be able to reason about this and deal with it accordingly.  

The syntax for the move activity is shown below. 

Boolean = move(location) 

The next pair of predefined activities deals with the ability of an agent to determine the passage of 

time.  To reason about time, tasks provide built in timers.  An agent can define a timer using the setTimer 

activity.  The setTimer activity takes a time as input and returns a timer that will timeout in exactly the 

time specified.  Thus, the time specified is the offset from the current time.  The setTimer activity returns 

a timer that can be tested by the agent to see if it has timed out using the timeout activity.  The timeout 

activity returns a Boolean value that is true if the timer has timed out.  Using the setTimer and timeout 

activities, an agent can use time in carrying out its assigned responsibilities.  The syntax for the setTimer 

and timeout functions is shown below. 

t = setTimer(time) 

Boolean = timeout(t) 

Actually, the timeout activity is not generally used in a state, but on transitions as a guard condition.  

As shown in Figure 2(a), the timeout(t) activity is placed in state1.  According to concurrent task 

semantics, the timeout(t) activity would be executed only once.  If the t had timed out, the transition 

would fire, otherwise, the transition would never fire since the timeout(t) activity would never again be 

executed.  In Figure 2(b), the timeout(t) activity is actually placed on the transition.   

While use of an activity in a guard condition appears to violate the semantics requiring a transition to 

be instantaneous, it does not.  An activity that returns either a Boolean value or an attribute of a specific 

data structure (such as the size of a queue) may be used in a guard condition of a transition.  A Boolean 

activity on a transition is only tested once all activities in the state have been executed and is continually 
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tested until a transition is enabled.  Multiple Boolean activities on transitions out of the same state are all 

executed before checking to see if any transitions are enabled.  Thus, the semantics of Figure 2(b) is as 

follows.  Upon entering state1, the setTimer(time) activity is executed.  Once it completes, the state goes 

to an idle states where it continually checks to see if timeout(t) is true.  When timeout(t) becomes true, 

then the transition fires and we move to state2.   

state1

t = setTimer(time)
to = timeout(t)

state2

[to]

state1

t = setTimer(time)

state2

[timeout(t)]

(a) (b)   

Figure 2.  Using timeout(t) 

3.2.2 Transitions 
As stated above, transitions occur instantaneously and move tasks from one state to another (or 

possibly the same state).  A transition is enabled if all the following conditions hold. 

1. The transition’s source state is the current state of the task. 

2. The transition’s trigger event has been generated. 

3. The transition’s guard condition evaluates to true. 

4. All activities in the transition’s source state have been completed. 

If a transition does not have a trigger or a guard, both conditions are assumed to hold.  Once a 

transition is enabled, it is executed and execution occurs instantaneously.  This means that events and 

messages are sent instantaneously and the current task state becomes the destination state of the transition.  
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In the case of a transition that sends two events or messages, even though the transition occurs 

instantaneously, the events and messages are ordered sequentially according to the ordering on the 

diagram. 

If multiple transitions are enabled simultaneously, the following priority scheme is used. 

1. Received events.  Any transitions whose trigger contains an event received from other tasks 

are processed first.  If multiple transitions with internal events are enabled, then they are 

processed in the order the events were received.  Since events are transmitted instantaneously, 

there must be a linear ordering to the events. 

2. Send events.  Any transitions whose transmissions contain an event to be sent to another task 

are processed next.  If multiple transitions with send events are enabled, they must be ordered 

based on other criteria such as arrival time of trigger, etc.  Since guard conditions must be 

mutually exclusive (see Guard Condition order below) and events and message triggers are 

ordered based on arrival times, there is always an ordering to the sending of events. 

3. Received messages.  Any transitions whose trigger contains a message received from another 

agent are processed next.  If multiple transitions with received messages are enabled, then 

they are processed in the order the messages were received.  Since messages, like events, are 

transmitted instantaneously, there must be a linear ordering to the message receipts. 

4. Send messages.  Any transitions whose transmissions contain a message to be sent to another 

agent are processed next.  If multiple transitions with send messages are enabled, they must 

be ordered based on other criteria such as arrival time of trigger, etc.  Since guard conditions 

must be mutually exclusive (see Guard Condition order below) and events and message 

triggers are ordered based on arrival times, there is always an ordering to the sending of 

messages. 

5. Guard conditions.  Transitions that only have guard conditions are the next priority.  The rule 

for guard conditions is that states containing multiple guard condition transitions must be 

mutually exclusive.  Since received events and messages are an implied part of a transition’s 
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guard condition, these may be conjuncted with the guard condition when determining 

exclusiveness.   

6. Null transitions.  The only allowable null transition is a transition from the start state.  If there 

is a null transition from the start state, there may be no other transitions from the start state. 

Thus in Figure 3, if we are in the wait state, it is possible to have two transitions enabled at the same 

time: [timeout(t)] and receive(bid(x),ag).  In this case, it clear from our priority rules that the 

receive message is handled before the timeout.  It is also possible that while handling the receive message 

(i.e., we are in state1 in the recordBid activity) we get another receive message.  Thus when we transition 

back to the wait state and send an acknowledge message, we have the same dilemma.  Since the timeout is 

in a guard condition and does not have a timestamp associated with it the way a message would, we 

handle the message first and go through the same process.   

wait

state1

recordBid(x, ag)

state2

/ send(acknowledge, ag)

receive(bid(x), ag)

[timeout(t)]

 

Figure 3.  Transition Priority Example 

If instead of a guard condition on the transition from the wait state to state2, we had another receive 

message, we would get different results.  For example, in Figure 4, assume upon entering the wait state 

we have two incoming messages waiting for us: endBidding and bid(x).  According to our priority rules, 

we take first message to come in that is enabled.  In this case, assume bid(x) came in before endBidding 
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(possibly before we even entered the wait state).  We would read the bid(x) message and begin the 

activity in state1.  Now if we received a second bid(x) message while in state1, that message is cued up 

after the endBidding message.  Therefore, after the recordBid activity is completed and the task 

transitions back to the wait state, the task processes the endBidding message first since it has priority over 

the second bid(x) message. 

wait

state1

recordBid(x, ag)

state2

/ send(acknowledge, ag)

receive(bid(x), ag)

receive(endBidding, Mgr)

 

Figure 4.  Message Transition Priority 

3.2.3 Task Invariants 
The semantics of task invariants are straightforward.  If the invariant is a variable type definition, the 

invariant is taken as definitional.  If the invariant is axiomatic, then the semantics are that the axiom must 

be true at all times.  In essence, the invariant becomes a post-condition of every activity in the task.  For 

instance, in Figure 5, the invariant size(list) >= 0 is a post-condition for the remove and add 

activities.  Using standard convention for add and removing from a list, the invariant could affect the 

remove activity.   
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receive(remove-request(agent), ag) / send(acknowledge, ag)

receive(add-request(agent), ag)/ send(acknowledge, ag)

Invariants:
size(list) >= 0

Add
add(agent, list)

Remove
remove(agent, list)

Idle

 

Figure 5.  Concurrent Task with Invariants 

4. Task Types 

As stated initially, the goal of concurrent tasks is to define the behavior of agents, tying the internal 

reasoning processes of the agent to its interaction with other internal processes as well as externally with 

other agents.  We can categorize these tasks into three types:  reactive, proactive, or heterogeneous.  A 

reactive task has at least one idle state where it waits for a request – from either another task or agent – 

before actually starting any processing.  A reactive task always starts in one of its idle states.  That is, the 

start state has a null transition to an idle state.  Proactive tasks do not have idle states.  They are 

continually generating requests for other agents or tasks.   
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A heterogeneous task, as the name suggests, is a combination of reactive and proactive tasks.  A 

heterogeneous task has idle states, but it does not start in an idle state.  It generates at least one request for 

another agent or task before entering an idle state. 

Based on these task definitions, we can categorize agent whose behavior is defined by tasks as either 

proactive or reactive.  A proactive agent is an agent with at least one proactive or heterogeneous task 

while a reactive agent is an agent with all reactive tasks. 

5. Examples 

5.1 Information Registration  
Assume we want to define the behavior of an information registration role and have come up with the 

following goals that this role is be responsible for: 

1. Keep list of all registered information sources 

a. Allow information sources to register and de-register 

2. Keep a list of all registered requests for information sources 

a. Allow agents to register and de-register on-going requests for information 

3. Inform requestors when information is available 

a. One-time requests 

b. Registered requests 

The registration role needs to allow information sources to register with it.  To register, the 

information source has to supply information on how it can be reached (address and port number) as well 

as the type of information it has available.  (To simplify this example, we assume that every agent within 

the system is using the same ontology.)  To define the behavior of this role, we develop a concurrent task 

for each of the three main goals.  We call these tasks the Information Source Registration task (goal 1), 

the Request Registration Task (goal 2), and the Inform Requestors task (Goal 3). 
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5.1.1 Information Source Registration Task 
The Information Source Registration task is shown in Figure 6.  This task is relatively simple and 

made simpler by the fact that we have not added any error checking.  Two basic things can happen in this 

task.  First, an external agent can send a register-source message to the task with its datatype and 

source information (name, address, port, etc.).  After receiving the message, the role calls its addSource 

activity and returns an acknowledge message and sends a new-info event to the Inform Requestors 

task to check if there is anyone who needs to be informed of this new source of information.  Having 

handled this request, the task waits in the idle state. 

Deregister
removeSource(t,s)

idle

Register
addSource(t,s)

receive(deregister-source(type, source), ag) / send(acknowledge, ag)

receive(register-source(type, source), ag)/ send(acknowledge, ag); new-info(type,s)

 

Figure 6.  Information Source Registration Task 

The second request the task can handle is from an external agent wanting to de-register the fact that it 

can provide a certain type of information.  This happens when a deregister-source message is received 

with appropriate type and source information.  After the message is received, the task invokes its 

removeSource activity, which actually removes the information source from the list.  After the activity is 

complete, the task sends an acknowledge message to the agent verifying that the request was granted. 
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5.1.2 Request Registration Task 
The Request Registration task is similar to the Information Source Registration task as shown in 

Figure 7.  In this case, the task receives requests to register and de-register standing requests for 

information sources containing specific types of data.  This is accomplished by an external agent sending 

either a register-request or deregister-request message.  The message cause internal list 

management activities to be performed with an acknowledge message to be returned upon completion.  

When a new agent registers, an internal new-request event is generated and passed to the Inform 

Requestors task, which searches the list of information sources for any existing information that can be 

sent immediately. 

Deregister
removeRequest(type,requestor)

idle

Register
addRequest(type,requestor)

receive(deregister-request(type, requestor), ag) / send(acknowledge, ag)

receive(register-request(type, requestor), ag)/ send(acknowledge, ag); new-request(type,requestor)

 

Figure 7.  Request Registration Task 

5.1.3 Inform Requestors of New Source Task 
The Inform Requestors of New Source (Figure 8) task is more complicated than the first two tasks.  

First, it is set in motion by an event from the Information Source Registration tasks: new-info.  Once the 

task is invoked, it searches the list of agents who have requested information of the type provided by this 

new information source and informs them of the new source.   
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idle
LookupRequestors

list = findRequestors(type)
ag = getRequestor(pop(list))

new-info(type, source)

wait

[size(list) > 0] / send(return-info-source(type,source), ag)

Continue
ag = getRequestor(pop(list))

receive(acknowledge, ag) [size(list) > 0] 

[size(list) <= 0]

/ send(return-info-source(type,source), ag) 

receive(acknowledge, ag) [size(list) <= 0] 

Invariants:
size(list) >= 0

 

Figure 8.  Inform Requestors of New Source Task 

There are two inputs to the task: the type of the new information source and the address of the source.  

Upon invocation, the LookupRequestors state is entered where the findRequestors, size, and 

getRequestor activities are carried out.  If no agents have requested the type of information from this 

new source  (x<=0), the task is terminated.  

Assuming agents interested in the new information source are found (x>0), the task goes about the 

business of sending the new source to each requesting agent, one at a time.  In this case, the task 

transitions out of the LookupRequestors state and sends a return-info-source message to the 

requesting agent, passing both the type and address information of the new information source, and enters 

the wait state.  Upon entering the wait state, the task basically enters a loop where it waits for an 

acknowledge message from the requesting agent and then, if there are more agents on the list, gets the 

next requesting agent from the list and sends it the new information source.  This is shown in the wait – 

continue – wait loop.  In the continue state, the list size counter, x, is decremented, the next requestor 

is popped off the list.  If there are no more agents on the list (x=0), the last acknowledge message sends 

the task to the idle state. 
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5.1.4 Inform Requestors Task 
The Inform Requestors task is very similar to the last task.  As shown in Figure 9, there are two 

differences.  The first difference is that the task is initiated by an event from the Request Registration 

task, new-request, or by a one-time request from an agent via a request message.  The second 

difference is that it searches the list of registered information sources to find sources that match the 

request.  Once invoked, the task searches the list of registered information sources for those who can 

provide the type of information requested and informs the requestor.   

idle
LookupSources

list = findSources(type)
source = getSource(pop(list))

receive(request(type), ag)

wait

[size(list) > 0] / send(return-info-source(type,source), ag)

Continue
source = getSource(pop(list))

/ send(return-info-source(type,source), ag)

receive(acknowledge, ag) [size(list) <= 0] 
/ send(end-of-list(), ag)

[size(list) <= 0] / send(end-of-list(), ag)

new-request(type, ag)

receive(acknowledge, ag) [size(list) > 0] 
Invariants:
size(list) >= 0

 

Figure 9.  Inform Requestors Task 

Regardless of the method of invocation, there are two inputs to the task: the type of information being 

requested and the agent who needs the information.  Upon invocation, the LookupSources state is entered 

where the findSources, size, and getSource activities are carried out.  If there are no possible 

information sources found (x<=0), the task is terminated and the end-of-list message is returned to 

the requesting agent.  

Assuming there are information sources of interest found (x>0), the task goes about the business of 

sending each information source, one at a time.  In this case, the task transitions out of the 
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LookupSources state and sends a return-info-source message to the requesting agent, passing both the 

type and address information of the source, and enters the wait state.  Upon entering the wait state, the 

task basically enters a loop where it waits for an acknowledge message from the requesting agent and 

then gets the next information source from the list and returns it to the agent.  This is shown in the wait – 

continue – wait loop.  In the continue state, the list size counter, x, is decremented, the next 

information source is removed from the list.  When the all information sources on the list have been sent 

(x=0), the task transitions to the idle state when it receives the last acknowledge message. 

6. Related Work 

Much of our work on Concurrent Task Models stem from work originally done by Harel on 

Statecharts (Harel 1998), which was the basis for state diagrams in Rumbaugh’s Object Modeling 

Technique (OMT) (Rumbaugh 1991) and the Unified Modeling Language (UML 1997).  The original 

goal of Statecharts was to model reactive systems, which Harel define as systems that continually interact 

with their environment using input and output whose timing may be unpredictable.  Statecharts are a very 

large, complex language supporting concurrency, conditional transitions, and event input and output.  The 

basic difference between Concurrent Tasks and Statecharts is the ability to define parameterized events 

and activities inside states in Concurrent Tasks.  Statecharts have no way to define internal processing and 

how information passed in events relates to those activities.  The only significant advantage of Statecharts 

is the ability to model substates for complex models.  We specifically chose to leave substates out of 

Concurrent Tasks to simplify the language.  We assume typical Concurrent Tasks are fairly simple with 

much of the complex processing performed within activities. 

Concurrent Task Models are really much more akin to OMT and UML state diagrams, which are used 

to model object class or method behavior.  However, we have provided an precise semantics that allows 

for a specific implementation.  These semantics differ from OMT or UML in that we assume all tasks run 

concurrently and that activities within states are non-interruptible.  While our simplifications may reduce 
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the ease of use of Concurrent Tasks, we argue that they have the same general expressiveness and a 

specific semantics that makes automatic agent synthesis possible. 

Concurrent tasks are also similar to Parunak and Singh’s use of Dooley graphs for agent coordination 

(Singh 1998) (Parunak 1996), among others.  The strength of Concurrent Tasks in relation to these efforts 

is its ability to tie agent coordination issues to internal agent reasoning and computation. 

7. Conclusions 

Concurrent tasks allow us to capture the behavior of agents in a uniform fashion.  Whether or not the 

tasks are internal to a single agent or carried out between multiple agents makes little different other than 

a minor syntactical change.  This allows us to define multiple concurrent tasks and then determine to 

which agent they should belong. 
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